總金額: 會員:NT$ 0 非會員:NT$ 0 
(此金額尚未加上運費)
電子電信技術 電腦技術 自動化基礎理論
 
 
 
 
深度學習推薦系統
 作  者: 王(吉吉)
 出版單位: 電子工業
 出版日期: 2020.03
 進貨日期: 2020/6/4
 ISBN: 9787121384646
 開  本: 16 開    
 定  價: 810
 售  價: 432
  會 員 價: 432
推到Facebook 推到Plurk 推到Twitter
前往新書區 書籍介紹 購物流程  
 
編輯推薦:

• 一線大廠推薦工程師傾囊相授
• 教你從零開始構建前沿、實用的推薦系統知識體系
• 揭秘巨頭公司推薦系統背後的邏輯
• 梳理深度學習推薦系統的發展脈絡,釐清每個關鍵模型和技術的細節
• 引導讀者掌握工業界模型設計背後真正的 “銀彈”
• 諸葛越、唐傑、張俊林、劉知遠、楊子等產學界專家傾情力薦,朱小強作序


內容簡介:

這是一本介紹推薦系統前沿技術的技術書。本書前幾章著重介紹深度學習排序模型的技術演化趨勢,然後依次介紹推薦系統其他模塊的技術細節和工程實現,通過業界前沿的推薦系統實例將所有知識融會貫通。本書著重討論的是推薦系統相關的經典和前沿技術內容,尤其是深度學習在推薦系統業界的應用。


作者簡介:

王?,畢業於清華大學計算機科學與技術系,美國知名流媒體公司Roku資深機器學習工程師,推薦系統架構負責人。曾任Hulu高級研究工程師,品友互動廣告效果算法組負責人。清華大學KEG實驗室學術搜索引擎AMiner早期發起人之一。主要研究方向為推薦系統、計算廣告、個性化搜索,發表相關領域學術論文7篇,擁有專利3項,是《百面機器學習》等口碑技術書的聯合作者。曾擔任KDD、CIKM等國際會議審稿人。


圖書目錄:

第1章 互聯網的增長引擎——推薦系統
1.1 為什麼推薦系統是互聯網的增長引擎
1.1.1 推薦系統的作用和意義
1.1.2 推薦系統與YouTube的觀看時長增長
1.1.3 推薦系統與電商網站的收入增長
1.2 推薦系統的架構
1.2.1 推薦系統的邏輯框架
1.2.2 推薦系統的技術架構
1.2.3 推薦系統的數據部分
1.2.4 推薦系統的模型部分
1.2.5 深度學習對推薦系統的革命性貢獻
1.2.6 把握整體,補充細節
1.3 本書的整體結構

第2章 前深度學習時代——推薦系統的進化之路
2.1 傳統推薦模型的演化關係圖
2.2 協同過濾——經典的推薦算法
2.2.1 什麼是協同過濾
2.2.2 用戶相似度計算
2.2.3 終結果的排序
2.2.4 ItemCF
2.2.5 UserCF與ItemCF的應用場景
2.2.6 協同過濾的下一步發展
2.3 矩陣分解算法——協同過濾的進化
2.3.1 矩陣分解算法的原理
2.3.2 矩陣分解的求解過程
2.3.3 消除用戶和物品打分的偏差
2.3.4 矩陣分解的優點和侷限性
2.4 邏輯回歸——融合多種特徵的推薦模型
2.4.1 基於邏輯回歸模型的推薦流程
2.4.2 邏輯回歸模型的數學形式
2.4.3 邏輯回歸模型的訓練方法
2.4.4 邏輯回歸模型的優勢
2.4.5 邏輯回歸模型的侷限性
2.5 從FM到FFM——自動特徵交叉的解決方案
2.5.1 POLY2模型——特徵交叉的開始
2.5.2 FM模型——隱向量特徵交叉
2.5.3 FFM模型——引入特徵域的概念
2.5.4 從POLY2到FFM的模型演化過程
2.6 GBDT LR——特徵工程模型化的開端
2.6.1 GBDT LR組合模型的結構
2.6.2 GBDT進行特徵轉換的過程
2.6.3 GBDT LR 組合模型開啟的特徵工程新趨勢
2.7 LS-PLM——阿里巴巴曾經的主流推薦模型
2.7.1 LS-PLM 模型的主要結構
2.7.2 LS-PLM模型的優點
2.7.3 從深度學習的角度重新審視LS-PLM模型
2.8 總結——深度學習推薦系統的前夜

第3章 浪潮之巔——深度學習在推薦系統中的應用
3.1 深度學習推薦模型的演化關係圖
3.2 AutoRec——單隱層神經網絡推薦模型
3.2.1 AutoRec模型的基本原理
3.2.2 AutoRec模型的結構
3.2.3 基於AutoRec模型的推薦過程
3.2.4 AutoRec模型的特點和侷限性
3.3 Deep Crossing模型——經典的深度學習架構
3.3.1 Deep Crossing模型的應用場景
3.3.2 Deep Crossing模型的網絡結構
3.3.3 Deep Crossing模型對特徵交叉方法的革命
3.4 NeuralCF模型——CF與深度學習的結合
3.4.1 從深度學習的視角重新審視矩陣分解模型
3.4.2 NeuralCF模型的結構
3.4.3 NeuralCF模型的優勢和侷限性
3.5 PNN模型——加強特徵交叉能力
3.5.1 PNN模型的網絡架構
3.5.2 Product層的多種特徵交叉方式
3.5.3 PNN模型的優勢和侷限性
3.6 Wide&Deep 模型——記憶能力和泛化能力的綜合
3.6.1 模型的記憶能力與泛化能力
3.6.2 Wide&Deep模型的結構
3.6.3 Wide&Deep模型的進化——Deep&Cross模型
3.6.4 Wide&Deep模型的影響力
3.7 FM與深度學習模型的結合
3.7.1 FNN——用FM的隱向量完成Embedding層初始化
3.7.2 DeepFM——用FM代替Wide部分
3.7.3 NFM——FM的神經網絡化嘗試
3.7.4 基於FM的深度學習模型的優點和侷限性
3.8 注意力機制在推薦模型中的應用
3.8.1 AFM——引入注意力機制的FM
3.8.2 DIN——引入注意力機制的深度學習網絡
3.8.3 注意力機制對推薦系統的啟發
3.9 DIEN——序列模型與推薦系統的結合
3.9.1 DIEN的“進化”動機
3.9.2 DIEN模型的架構
3.9.3 興趣抽取層的結構
3.9.4 興趣進化層的結構
3.9.5 序列模型對推薦系統的啟發
3.10 強化學習與推薦系統的結合
3.10.1 深度強化學習推薦系統框架
3.10.2 深度強化學習推薦模型
3.10.3 DRN的學習過程
3.10.4 DRN的在線學習方法——競爭梯度下降算法
3.10.5 強化學習對推薦系統的啟發
3.11 總結——推薦系統的深度學習時代

第4章 Embedding技術在推薦系統中的應用
4.1 什麼是Embedding
4.1.1 詞向量的例子
4.1.2 Embedding 技術在其他領域的擴展
4.1.3 Embedding 技術對於深度學習推薦系統的重要性
4.2 Word2vec——經典的Embedding方法
4.2.1 什麼是Word2vec
4.2.2 Word2vec模型的訓練過程
4.2.3 Word2vec的“負采樣”訓練方法
4.2.4 Word2vec對Embedding技術的奠基性意義
4.3 Item2vec——Word2vec 在推薦系統領域的推廣
4.3.1 Item2vec的基本原理
4.3.2 “廣義”的Item2vec
4.3.3 Item2vec方法的特點和侷限性
4.4 Graph Embedding——引入更多結構信息的圖嵌入技術
4.4.1 DeepWalk——基礎的Graph Embedding方法
4.4.2 Node2vec——同質性和結構性的權衡
4.4.3 EGES——阿里巴巴的綜合性Graph Embedding方法
4.5 Embedding與深度學習推薦系統的結合
4.5.1 深度學習網絡中的Embedding層
4.5.2 Embedding的預訓練方法
4.5.3 Embedding作為推薦系統召回層的方法
4.6 局部敏感哈希——讓Embedding插上翅膀的快速搜索方法
4.6.1 “快速”Embedding近鄰搜索
4.6.2 局部敏感哈希的基本原理
4.6.3 局部敏感哈希多桶策略
4.7 總結——深度學習推薦系統的核心操作

第5章 多角度審視推薦系統
5.1 推薦系統的特徵工程
5.1.1 構建推薦系統特徵工程的原則
5.1.2 推薦系統中的常用特徵
5.1.3 常用的特徵處理方法
5.1.4 特徵工程與業務理解
5.2 推薦系統召回層的主要策略
5.2.1 召回層和排序層的功能特點
5.2.2 多路召回策略
5.2.3 基於Embedding的召回方法
5.3 推薦系統的實時性
5.3.1 為什麼說推薦系統的實時性是重要的
5.3.2 推薦系統“特徵”的實時性
5.3.3 推薦系統“模型”的實時性
5.3.4 用“木桶理論”看待推薦系統的迭代升級
5.4 如何合理設定推薦系統中的優化目標
5.4.1 YouTube以觀看時長為優化目標的合理性
5.4.2 模型優化和應用場景的統一性
5.4.3 優化目標是和其他團隊的接口性工作
5.5 推薦系統中比模型結構更重要的是什麼
5.5.1 有解決推薦問題的“銀彈”嗎
5.5.2 Netflix對用戶行為的觀察
5.5.3 觀察用戶行為,在模型中加入有價值的用戶信息
5.5.4 DIN模型的改進動機
5.5.5 算法工程師不能只是一個“煉金術士”
5.6 冷啟動的解決辦法
5.6.1 基於規則的冷啟動過程
5.6.2 豐富冷啟動過程中可獲得的用戶和物品特徵
5.6.3 利用主動學習、遷移學習和“探索與利用”機制
5.6.4 “巧婦難為無米之炊”的困境
5.7 探索與利用
5.7.1 傳統的探索與利用方法
5.7.2 個性化的探索與利用方法
5.7.3 基於模型的探索與利用方法
5.7.4 “探索與利用”機制在推薦系統中的應用

第6章 深度學習推薦系統的工程實現
6.1 推薦系統的數據流
6.1.1 批處理大數據架構
6.1.2 流計算大數據架構
6.1.3 Lambda架構
6.1.4 Kappa架構
6.1.5 大數據平台與推薦系統的整合
6.2 推薦模型離線訓練之Spark MLlib
6.2.1 Spark的分布式計算原理
6.2.2 Spark MLlib的模型並行訓練原理
6.2.3 Spark MLlib並行訓練的侷限性
6.3 推薦模型離線訓練之Parameter Server
6.3.1 Parameter Server的分布式訓練原理
6.3.2 一致性與並行效率之間的取捨
6.3.3 多server節點的協同和效率問題

6.3.4 Parameter Server技術要點總結
6.4 推薦模型離線訓練之TensorFlow
6.4.1 TensorFlow的基本原理
6.4.2 TensorFlow基於任務關係圖的並行訓練過程
6.4.3 TensorFlow的單機訓練與分布式訓練模式
6.4.4 TensorFlow技術要點總結
6.5 深度學習推薦模型的上線部署
6.5.1 預存推薦結果或Embedding結果
6.5.2 自研模型線上服務平台
6.5.3 預訓練Embedding 輕量級線上模型
6.5.4 利用PMML轉換並部署模型
6.5.5 TensorFlow Serving
6.5.6 靈活選擇模型服務方法
6.6 工程與理論之間的權衡
6.6.1 工程師職責的本質
6.6.2 Redis容量和模型上線方式之間的權衡
6.6.3 研發週期限制和技術選型的權衡
6.6.4 硬件平台環境和模型結構間的權衡
6.6.5 處理好整體和局部的關係

第7章 推薦系統的評估
7.1 離線評估方法與基本評價指標
7.1.1 離線評估的主要方法
7.1.2 離線評估的指標
7.2 直接評估推薦序列的離線指標
7.2.1 P-R曲線
7.2.2 ROC曲線
7.2.3 平均精度均值
7.2.4 合理選擇評估指標
7.3 更接近線上環境的離線評估方法——Replay
7.3.1 模型評估的邏輯閉環
7.3.2 動態離線評估方法
7.3.3 Netflix的Replay評估方法實踐
7.4 A/B測試與線上評估指標
7.4.1 什麼是A/B測試
7.4.2 A/B測試的“分桶”原則
7.4.3 線上A/B測試的評估指標
7.5 快速線上評估方法——Interleaving
7.5.1 傳統A/B測試存在的統計學問題
7.5.2 Interleaving方法的實現
7.5.3 Interleaving方法與傳統A/B測試的靈敏度比較
7.5.4 Interleaving方法指標與A/B測試指標的相關性
7.5.5 Interl


章節試讀:

前言 推薦系統的深度學習時代

1992 年,施樂公司帕拉奧圖研究中心(Xerox Palo Alto Research Center)的 David Goldberg 等學者創建了應用協同過濾算法的推薦系統。如果以此作為推薦系統領域的開端,那麼推薦系統距今已有28年曆史。在這28年中,特別是近5年,推薦系統技術的發展日新月異。毫無疑問,為推薦系統插上翅膀的,是深度學習帶來的技術革命。2012年,隨著深度學習網絡 AlexNet 在著名的 ImageNet 競賽中一舉奪魁,深度學習引爆了圖像、語音、自然語言處理等領域,就連互 聯網商業化最成功、機器學習模型應用最廣泛的推薦、廣告和搜索領域,也被深度學習的浪潮一一席捲。2015年,隨著微軟、谷歌、百度、阿里等公司成功地在推薦、廣告等業務場景中應用深度學習模型,推薦系統領域正式邁入了深度學習時代。
處於深度學習時代的推薦系統算法工程師(以下簡稱推薦工程師)是幸運的,我們見證了最深刻、也是最迅猛的技術變革;但某種意義上,我們也是不幸的,因為在這個技術日新月異、模型飛速演化的時代,一不小心我們就處於被淘汰的邊緣。然而,這個時代,終究為對技術充滿熱情的工程師留下了充足的發展空間。在熱忱的推薦工程師搭建自己的技術藍圖、豐富自己的技術儲備時,希望本書能成為他們腦海中推薦系統技術的思維導圖,幫助他們構建深度學習推薦系統的技術框架。

本書特色
本書希望討論的是推薦系統相關的“經典的”或者“前沿的”技術內容。其中著重討論的是深度學習在推薦系統業界的應用。需要明確的是,本書不是一本機器學習或者深度學習的入門書,雖然書中會穿插機器學習基礎知識的介紹,但絕大多數內容建立在讀者有一定的機器學習基礎上;本書也不是一本純理論書籍,而是一本從工程師的實際經驗角度出發,介紹深度學習在推薦系統領域的應用方法,以及推薦系統相關的業界前沿知識的技術書。

本書讀者群
本書的目標讀者可分為兩類:一類是互聯網行業相關方向,特別是推薦、廣告、搜索領域的從業者。希望這些同行能夠通過學習本書熟悉深度學習推薦系統的發展脈絡,釐清每個關鍵模型和技術的細節,進而在工作中應用甚至改進這些技術點。
另一類是有一定機器學習基礎,希望進入推薦系統領域的愛好者、在校學生。本書盡量用平實的語言,從細節出發,介紹推薦系統技術的相關原理和應用方法,幫助讀者從零開始構建前沿、實用的推薦系統知識體系。

致謝
寫作本書的過程並不輕鬆,除了擠出幾乎所有的業餘時間用於寫作,還需要花大量的時間查閱論文、梳理技術框架,甚至與各大公司的同行及論文的作者交流技術細節、追蹤業界前沿的技術應用。在此,十分感謝為本書提供過幫助的業界同行。
感謝在寫作過程中給予我極大支持和理解的妻子和女兒,你們對家庭的照顧和對我工作的支持是我完成本書的最大動力。

謝謝你們!

美國舊金山灣區 Foster City,王?

 
  步驟一.
依據網路上的圖書,挑選你所需要的書籍,根據以下步驟進行訂購
選擇產品及數量 結 帳 輸入基本資料 取貨與付款方式
┌───────────────────────────────────────────────────┘
資料確定 確認結帳 訂單編號    

步驟二.
完成付款的程序後,若採用貨到付款等宅配方式,3~7天內 ( 例假日將延期一至兩天 ) 您即可收到圖書。若至分店門市取貨,一週內聯絡取書。

步驟三.
完成購書程序者,可利用 訂單查詢 得知訂單進度。

注意事項.
● 付款方式若為網路刷卡必須等" 2 ~ 3 個工作天"確認款項已收到,才會出貨.如有更改書籍數量請記得按更新購物車,謝謝。

● 大陸出版品封面老舊、磨痕、凹痕等均屬常態,除封面破損、內頁脫落...等較嚴重的狀態外,其餘所有商品將正常出貨。

● 至2018年起,因中國大陸環保政策,部分書籍配件以QR CODE取代光盤音頻mp3或dvd,已無提供實體光盤。如需使用學習配件,請掃描QR CODE 連結至當地網站註冊並通過驗證程序,方可下載使用。造成不便,敬請見諒。

● 我們將保留所有商品出貨權利,如遇缺書情形,訂單未達免運門檻運費需自行負擔。

預訂海外庫存.
商品到貨時間須4週,訂單書籍備齊後方能出貨,如果您有急用書籍,建議與【預訂海外庫存】商品分開訂購。